

# **Black Belt Test Questions w/Answers:**

| 1. | Sigma r      | refers to a roman l      | etter t      | hat mathematicians use when discussing "average" or "mean"                                                                                            |
|----|--------------|--------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | [ ]          | True                     | [ <b>X</b> ] | False                                                                                                                                                 |
| 2. | A proce      | ess operating at 6       | Sigma        | will only generate 3.4 defects per million opportunities?                                                                                             |
|    | [ <b>X</b> ] | True                     | [ ]          | False                                                                                                                                                 |
|    | In order     | to achieve Six Si        | gma, p       | oractitioners follow a standard & rigorous methodology known a                                                                                        |
| 4. | Six Sigr     | ma originated in th      | ne 198       | 0's at Motorola?                                                                                                                                      |
|    | [ <b>X</b> ] | True                     | [ ]          | False                                                                                                                                                 |
| 5. | []           | Brainstorm poss          | sible fa     | IC methodology follows which approach actors then randomly analyze them to find the significant ones & experience to quickly find solutions on Y=f(x) |
| 6. | A Six S      | igma process will        | only p       | roduce this many defects per million opportunities 3.4                                                                                                |
| 7. |              | ng Six Sigma has<br>True |              | ng to do with meeting customer expectations?                                                                                                          |
| 8. | Who is       | credited as being        | the fat      | ther of Six Sigma?                                                                                                                                    |
|    | [ ]          | Bob Galvin               |              | [ ] Mikel Harry                                                                                                                                       |
|    | []           | Jack Welch               |              | [X] Bill Smith                                                                                                                                        |

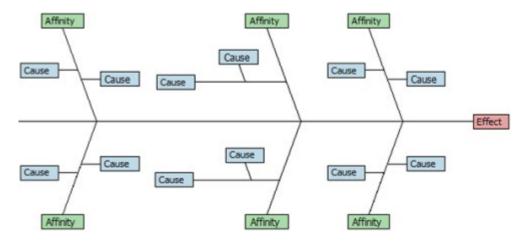


| 9. 1 | . Hard costs and soft costs are two types of COPQ |                              |        |                    |                                        |
|------|---------------------------------------------------|------------------------------|--------|--------------------|----------------------------------------|
|      | [ <b>X</b> ]                                      | True                         | []     | False              |                                        |
| 10.  | COPQ                                              | is an acronym tha            | at sta | nds for v          | what? Cost of Poor Quality             |
| 11.  | Which                                             | of the following is          | the c  | ne that            | is not part of the 7 deadly Muda?      |
|      | []                                                | Defects                      |        | [ ]                | Over Production                        |
|      | []                                                | Inventory                    |        | [ ]                | Waiting                                |
|      | []                                                | Movement                     |        | [ ]                | Conveyance                             |
|      | []                                                | Over Processing              | 3      | [ <b>X</b> ]       | Measuring                              |
| 12.  |                                                   | areto Principle is r<br>True |        | d after a<br>False | n Italian economist Vilfredo Pareto    |
| 13.  | CTQ's                                             | are translated fro           | m VC   | C                  |                                        |
|      | [ <b>X</b> ]                                      | True                         | [ ]    | False              |                                        |
| 14.  | CTQ is                                            | an acronym that              | stand  | ds for wh          | nat? Critical to Quality               |
| 15.  | DPU is                                            | s calculated by div          | riding | the num            | nber of defects by the number of units |
|      | [ <b>X</b> ]                                      | True                         | [ ]    | False              |                                        |
| 16.  |                                                   | Sigma Primary an<br>True     | d Sed  | condary<br>False   | Metrics are Mandatory                  |

17. RTY is an acronym that stands for what? Rolled Throughput Yield



| 19. | DMPO is an acronym that     | ands for what? Defects per Million Opportunites                                                                                      |
|-----|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 20. | Which of these is not one   | the 4 stages of team development?                                                                                                    |
|     | [ ] Performing              | [ ] Storming                                                                                                                         |
|     | [ ] Norming                 | [ ] Forming                                                                                                                          |
|     | [X] Adorning                |                                                                                                                                      |
| 21. | Which is not a characterist | of a successful team?                                                                                                                |
|     | [ ] Common goals and        | orking together to achieve that goal                                                                                                 |
|     | [ ] Team member dive        | ity (skills, knowledge, experience etc.)                                                                                             |
|     | [ ] Appropriate resource    | s are available                                                                                                                      |
|     | [ ] Mutual respect          |                                                                                                                                      |
|     | [ ] A good leader exists    | among the team                                                                                                                       |
|     | [X] Complacency exists      |                                                                                                                                      |
|     | •                           | critical measure, it's the reason for your project, it's your beacon. This nt thing to understand in order for you to be successful. |
| 23. | A well written problem stat | nent contains all of the following except                                                                                            |
|     | [ ] Baseline                | [ ] Goal                                                                                                                             |
|     | [ ] Gap                     | [ ]COPQ                                                                                                                              |
|     | [ ] Timeline Reference      | [X] Project Plan                                                                                                                     |
| 24. | From the following, select  | ose that are characteristics of a Lean Enterprise                                                                                    |
|     | [X] Pull Systems            | [X] Flow                                                                                                                             |
|     | [X] Zero Waste              | [X] Availability                                                                                                                     |
|     | [X] Flexibility             | [X] Value Add                                                                                                                        |


18. DPU is an acronym that stands for what? Defects per Unit



| 25. | Put these 5S's into the proper order of execution |                          |              |                                                  |  |
|-----|---------------------------------------------------|--------------------------|--------------|--------------------------------------------------|--|
|     | [ 2 ] Set in Order                                |                          | [1]          | Sort                                             |  |
|     | [ <b>3</b> ] Shine                                |                          | [ <b>5</b> ] | Sustain                                          |  |
|     | [ 4 ] Standardize                                 |                          |              |                                                  |  |
|     |                                                   |                          |              |                                                  |  |
| 26. | Lean and Six Sigma are I                          | Both focused             | d on Qเ      | uality & Value for the customer?                 |  |
|     | [X] True                                          | [ ] False                |              |                                                  |  |
| 27. | What is the Japanese wo                           | rd for waste′            | ? Muda       | a                                                |  |
|     | What type of muda is was                          |                          | •            | ore than required, scheduling more capacity than |  |
|     | [ ] Inventory                                     |                          | []           | Over-Production                                  |  |
|     | [ ] Motion                                        |                          | []           | Waiting                                          |  |
|     | [ ] Transportation                                |                          | [ <b>X</b> ] | Over-Processing                                  |  |
| 29. | <b>Defects</b> are flaws, errors                  | or other non             | n-confo      | rmities that compromise the value of a product   |  |
| 30. | Lean is only about remov                          | ing waste fro            | om the       | enterprise?                                      |  |
|     | [ ] True                                          | [ <mark>X</mark> ] False |              |                                                  |  |
| 31. | The 5 Principals of Lean                          | are paraphra             | ased be      | elow, select the correct 5                       |  |
|     | [X] Customer Defines                              | Value                    |              | [X] Identify the Value Stream                    |  |
|     | [X] Continuous Flow                               |                          |              | [X] Pull Where Possible                          |  |
|     | [X] Manage Toward Pe                              | erfection                |              | [ ] Batch Processing                             |  |
|     | [ ] Work Faster                                   |                          |              |                                                  |  |



- 32. **Over Production** is when more products are produced than are required by the next function or customer.
- 33. What is this?



[]FMEA

[X] C&E Diagram

[ ] Process Map

- [ ] XY Diagram
- 34. Arrange these C&E process steps into the correct order of execution.
  - [3] Affinitize or group the causes
  - [2] Brainstorm all potentials causes
  - [4] Evaluate
  - [1] Identify & define the effect
- 35. SIPOC is an acronym using which words?
  - [X] Suppliers
- [ ] Immediate

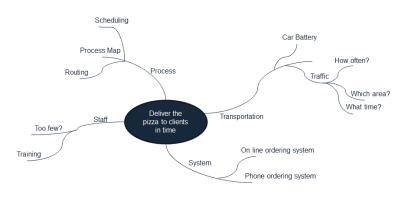
[X] Inputs

[X] Process

[X] Outputs

[X] Customers

[ ] Primary


- [ ] Secondary
- 36. A SIPOC is another name for a flow chart



| Γ | 1 True | [X] False |
|---|--------|-----------|

- 37. An FMEA ranks potential failures using values assigned to severity, occurrence and detection?
  - [X] True [ ] False
- 38. Which of these tools might you use if you want to develop a Risk Priority Number and ranking for the various types of failures that could occur?
  - [ ] Cause & Effect Diagram [ ] SIPOC
  - [ ] Functional Process Map [ ] Thought Process Map
  - [ ] XY Diagram [X] FMEA
- 39. **SIPOC** should be used when trying to understand the links between customers, process steps and process outputs.
- 40. Cause & Effect Diagram should be used when brainstorming possible causes to an effect.

#### 41. What is this?



- [ ] FMEA [ ] C&E Diagram
- [ ] Process Map [ ] SIPOC
- [X] Thought Process Map [ ] Spaghetti Map
- 42. Continuous variables are measured, Discrete variables are counted
  - [X] True [ ] False



| 43.        | Nominal Data are discrete and rank ordered. |                                                                          |  |  |  |
|------------|---------------------------------------------|--------------------------------------------------------------------------|--|--|--|
|            | [ ]True                                     | [X] False                                                                |  |  |  |
| 44.        | Median is the average of                    | of a set of data                                                         |  |  |  |
|            | [ ] True                                    | [X] False                                                                |  |  |  |
| 45.        | Median is the middle va                     | lue in a set of data                                                     |  |  |  |
|            | [ <b>X</b> ] True                           | [ ] False                                                                |  |  |  |
| 46.        | Mode is the value in a c                    | lata set that occurs most frequently                                     |  |  |  |
|            | [X] True                                    | [ ] False                                                                |  |  |  |
| 47.<br>mea |                                             | measure that describes how far the data points spread away from the      |  |  |  |
|            | [ <b>X</b> ] True                           | [ ] False                                                                |  |  |  |
| 48.        | For the normal distribut                    | ion, about 68% of the data fall within +/- 1 standard deviation          |  |  |  |
| 49.<br>mea |                                             | ion, about 95% of the data fall within +/- 2 standard deviation from the |  |  |  |
| 50.        | A <b>Histogram</b> is a graph               | ical tool to present the distribution of the data                        |  |  |  |
| 51.        | The null hypothesis for                     | a normality test is that the data are normally distributed?              |  |  |  |
|            | [ <b>X</b> ] True                           | [ ] False                                                                |  |  |  |

52. Select only those that are examples of graphical analysis tools



| [X] Box Plots                                               | [X] His               | stograms    |                            |                             |
|-------------------------------------------------------------|-----------------------|-------------|----------------------------|-----------------------------|
| [X] Scatter Plots                                           | [ <mark>X</mark> ] Ru | n Charts    |                            |                             |
| [ ] ANOVA table                                             | [ ] Re                | egression   | Equation                   |                             |
| 53. Measurement Systems and trustworthy before maki         |                       | =           |                            | sures the data are reliable |
| [ <b>X</b> ] True                                           | [ ] False             |             |                            |                             |
| 54. Repeatability evaluates when measuring the same of      |                       |             |                            |                             |
| [ <b>X</b> ] True                                           | [ ] False             |             |                            |                             |
| 55. Which are common sou                                    | rces of variatio      | n in most ı | neasurement systems        | ?                           |
| [X] Part to part variat                                     | ion                   | [X] Meas    | surement instrument        |                             |
| [X] Repeatability                                           |                       | [X] Repro   | oducibility                |                             |
| [ ] Humidity                                                |                       | [ ] Altitu  | de                         |                             |
| 56. In a Measurement Systogreatest?                         | ems Analysis, v       | vhich sour  | ce of variation do we h    | ope to see be the           |
| [X] Part to part variat                                     | ion                   | [           | ] Measurement instru       | ment                        |
| [ ] Measurer (perso                                         | n measuring)          | [           | ] Altitude                 |                             |
| [ ] Humidity                                                |                       |             |                            |                             |
| 57. Bias is the difference be                               | etween the obs        | erved valu  | ie and the true value o    | f a measurement.            |
| 58. <b>Reproducibility</b> evalua measuring the same object |                       | ferent app  | raisers can obtain the     | same value when             |
| 59. In a Variable Gage R&F and Reproducibility should be    | =                     |             | ibution of variation attri | butable to Repeatability    |



| 60. I            | If Kappa is greater than                         | n 0.7 the measurement system is acceptable                                                      |
|------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                  | [X] True                                         | [ ] False                                                                                       |
|                  | Cp considers the withir                          | n-subgroup standard deviation and Pp considers the total standard data.                         |
|                  | [X] True                                         | [ ] False                                                                                       |
|                  | Being stable does not etermine whether a pro     | guarantee a process to be capable. However, being stable is a prerequisite cess is capable.     |
|                  | [X] True                                         | [ ] False                                                                                       |
|                  | Cpk measures the proo<br>the process average ir  | cess's potential capability to meet the two-sided specifications. It doesn't nto consideration. |
|                  | [ ] True                                         | [X] False                                                                                       |
|                  | Cp, and Pp take both t<br>suring the process cap | he variation and the average of the process into consideration when ability.                    |
|                  | [ ] True                                         | [X] False                                                                                       |
| 65. <i>i</i>     | A Pp of greater than 1                           | suggests                                                                                        |
|                  | [ ] Total process va                             | ariation is greater than the width between the USL and LSL                                      |
|                  | [X] Total process va                             | riation is less than the width between the USL and LSL                                          |
| 66. /            | A Pp of less than 1 sug                          | ggests                                                                                          |
|                  | [X] Total process va                             | riation is greater than the width between the USL and LSL                                       |
|                  | [ ] Total process va                             | ariation is less than the width between the USL and LSL                                         |
| 67. <sup>1</sup> | Which of the following                           | measurements is NOT a process capability index?                                                 |
|                  | [ ] Cp                                           | [ ] Cpk                                                                                         |



|     | [ <mark>X</mark> ] Kappa  | [ ] Percent Defectives                                                           |
|-----|---------------------------|----------------------------------------------------------------------------------|
|     |                           |                                                                                  |
| 68. | The Multi-vari chart is u | used to visualize sources of variation.                                          |
| 69. | Pick which of the followi | ng are basic features of the data that a probability distribution describe?      |
|     | [ <mark>X</mark> ] Shape  | [X] Center                                                                       |
|     | [X] Scale                 | [ ] Stability                                                                    |
|     |                           |                                                                                  |
| 70. | Which distribution has n  | nean equal to np and the variance equal to np(1-p)?                              |
|     | [ <b>X</b> ] Binomial     | [ ] Normal                                                                       |
|     | [ ] Exponential           | [ ] Weibull                                                                      |
|     |                           |                                                                                  |
|     | Which continuous proba    | ability distribution is the basis for the analysis of variance or test for equal |
|     | [ ] Normal Distribution   | on [X] F Distribution                                                            |
|     | [ ] Student t distribu    | tion [ ] Chi Square Distribution                                                 |
|     |                           |                                                                                  |
| 72. | Select only continuous of | distributions from the list below.                                               |
|     | [X] Normal Distribution   | on [X] F Distribution                                                            |
|     | [X] Student T Distribu    | ution [ ] Binomial Distribution                                                  |
|     | [ ] Poisson Distribut     | ion                                                                              |
|     |                           |                                                                                  |
| 73. | 68-95-99.7 Rule for Nor   | mal Distribution states that                                                     |
|     | • about 68% of            | the data stay within $\boldsymbol{\sigma}$ from the mean.                        |
|     | • about 95% of            | the data stay within 2σ from the mean.                                           |
|     | • about 99.7%             | of the data stay within 3σ from the mean                                         |
|     | [ <b>X</b> ] True         | [ ] False                                                                        |

74. The process of selecting a subset of observations within a population is referred to as **Sampling**.



|     |                         | •                                          | aking interences regarding the characteristics of an acteristics of an observable <b>Sample</b> .          |
|-----|-------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 76. | To reduce β risk, w     | e should increase th                       | ne Power.                                                                                                  |
| 77. | The higher the con      | fidence level, the wi                      | der the confidence interval?                                                                               |
|     | [X] True                | [ ] False                                  |                                                                                                            |
| 78. | The larger the sam      | ple size, the wider th                     | ne confidence interval?                                                                                    |
|     | [ ] True                | [ <mark>X</mark> ] False                   |                                                                                                            |
| 79. | A valid sample mus      | st be unbiased and r                       | epresentative of the population?                                                                           |
|     | [ <mark>X</mark> ] True | [ ] False                                  |                                                                                                            |
| 80. | The more variability    | y, the tighter the con                     | fidence interval?                                                                                          |
|     | [ ] True                | [ <mark>X</mark> ] False                   |                                                                                                            |
|     | • •                     | rategy is used to seleulation are arranged | ect samples at regular intervals based on a ordered list in some order?                                    |
|     | [ ] Simple rand         | om sampling                                | [ ] Stratified sampling                                                                                    |
|     | [X] Systematic s        | sampling                                   | [ ] Cluster sampling                                                                                       |
|     | . •                     | •                                          | d independent categories and then samples are randomly of the population. Which sampling strategy is this? |
|     | [ ] Simple rand         | om sampling                                | [X] Stratified sampling                                                                                    |
|     | [ ] Systematic          | sampling                                   | [ ] Cluster sampling                                                                                       |



|     | 83. A hypothesis test is a statistical method in which a specific hypothesis is formulated about the population, and the decision of whether to reject the hypothesis is made based on sample data. |                                                                 |                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
|     | [X] True                                                                                                                                                                                            | [ ] False                                                       |                                                                 |
|     |                                                                                                                                                                                                     | is <b>less</b> than the α level, we<br>etween different groups. | e reject the null and claim that there is a statistically       |
| 85. | α risk is the risk of                                                                                                                                                                               | making a Type I error?                                          |                                                                 |
|     | [X] True                                                                                                                                                                                            | [ ] False                                                       |                                                                 |
|     | The proportion of t                                                                                                                                                                                 | he area under the samplin                                       | g distribution and beyond the test statistic is the             |
| 87. | α risk is the risk of                                                                                                                                                                               | being wrong if you fail to r                                    | eject the null?                                                 |
|     | [ ] True                                                                                                                                                                                            | [X] False                                                       |                                                                 |
| 88. | In which of the follo                                                                                                                                                                               | owing conditions can we n                                       | ot reject the null hypothesis?                                  |
|     | [ ] the test statistic falls into the critical region                                                                                                                                               |                                                                 |                                                                 |
|     | [ ] the test statistic is greater than the critical value                                                                                                                                           |                                                                 |                                                                 |
|     | [ ] P-value is s                                                                                                                                                                                    | maller than alpha level                                         |                                                                 |
|     | [ <b>X</b> ] P-value is g                                                                                                                                                                           | reater than alpha level                                         |                                                                 |
|     | * *                                                                                                                                                                                                 | esis test is used when we are about the direction of the        | care about whether there is a difference between ne difference. |
|     | [ ] True                                                                                                                                                                                            | [X] False                                                       |                                                                 |
| 90. | Select the two pos                                                                                                                                                                                  | sible conclusions of hypot                                      | hesis testing                                                   |
|     | [ ] Accept the                                                                                                                                                                                      | Alternative Hypothesis                                          | [X] Reject the Null Hypothesis                                  |
|     | [X] Fail to Rejec                                                                                                                                                                                   | ct the Null Hypothesis                                          | [ ] Reject the Alternative Hypothesis                           |



| •                                                          | r than the $\alpha$ level, we fail to reject the null and claim that there is no rence between different groups.   |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| [ <b>X</b> ] True                                          | [ ] False                                                                                                          |
| 92. One sample t-test is a between a population mea        | hypothesis test to study whether there is a statistically significant differencen and a specified value.           |
| [X] True                                                   | [ ] False                                                                                                          |
| 93. A <b>2 Sample-t test</b> is a between the means of two | hypothesis test to study whether there is a statistically significant difference populations                       |
| 94. Which of these is not a                                | an assumption of the ANOVA?                                                                                        |
| [X] The data of k po                                       | pulations are discrete                                                                                             |
| [ ] The data of k po                                       | opulations are continuous.                                                                                         |
| [ ] The data of k po                                       | opulations are normally distributed                                                                                |
| [ ] The variances of                                       | of k populations are equal.                                                                                        |
|                                                            | t is 0.6656 and the alpha level is 0.05 then we the null at the means of two groups are                            |
| [X] fail to reject                                         | [ ] reject                                                                                                         |
| [ <b>X</b> ] equal                                         | [ ] unequal                                                                                                        |
| 96. In a Two Sample T-tes difference between the me        | et If  tcalc >tcrit, we reject the null and claim there is a statistically significant ans of the two populations. |
| [ <b>X</b> ] True                                          | [ ] False                                                                                                          |
| 97. The One-way ANOVA two or more populations.             | (one-way analysis of variance) is a statistical method to compare means of                                         |
| [X] True                                                   | [ ] False                                                                                                          |



| 98.         | Which of these is                        | ot one of the three types of two sample t-tests?                                          |    |
|-------------|------------------------------------------|-------------------------------------------------------------------------------------------|----|
|             | [ ] Two Sampl                            | T-test unknown variances                                                                  |    |
|             | [ ] Two Sampl                            | T-test known variances; equal variances                                                   |    |
|             | [ ] Two Sampl                            | T-test known variances; un-equal variances                                                |    |
|             | [ <b>X</b> ] Two Sample                  | T-test known variances; variances greater than 1                                          |    |
| 99.<br>grou |                                          | the means of different groups by analyzing the averages between and within                |    |
|             | [ ] True                                 | [X] False                                                                                 |    |
|             | The Mann-Whitn<br>h are normally dis     | y test is a statistical hypothesis test to compare the medians of two populatio ibuted?   | ns |
|             | [ ] True                                 | [X] False                                                                                 |    |
|             | The <b>Kruskal-Wa</b><br>ians among more | lis test is a one-way analysis of variance hypothesis test to compare the nan two groups. |    |
| 102.        | Mood's median is                         | an alternative to Kruskal-Wallis?                                                         |    |
|             | [X] True                                 | [ ] False                                                                                 |    |
| 103.        | Which of these is                        | not a true statement?                                                                     |    |
|             | [ ] For the data                         | with outliers, Mood's median test is more robust than Kruskal-Wallis                      |    |
|             | [ ] Mood's me                            | ian is an alternative to Kruskal-Wallis.                                                  |    |
|             | [ ] Mood's me                            | ian test is used to compare the medians of two or more populations                        |    |
|             | [X] Mood's med                           | an test is not robust for non-normally distributed populations.                           |    |



| 104. | Select all that are acc                                                                 | urate statements.                                                                                                                   |  |  |  |
|------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | [X] One sample sign tests are hypothesis tests comparing medians to a specified value   |                                                                                                                                     |  |  |  |
|      | [X] the one Sample sign test is an alternative test to the parametric one sample t test |                                                                                                                                     |  |  |  |
|      | [X] One sample sign                                                                     | test is a distribution-free test.                                                                                                   |  |  |  |
|      |                                                                                         | en the One Sample Sign test and the One Sample Wilcoxon test is that the mes the distribution of the data is symmetric.             |  |  |  |
|      | [X] True                                                                                | [ ] False                                                                                                                           |  |  |  |
|      |                                                                                         |                                                                                                                                     |  |  |  |
|      | Chi-square test can be<br>veen two discrete factor                                      | e used to test whether there is any statistically significant relationship s?                                                       |  |  |  |
|      | [ <b>X</b> ] True                                                                       | [ ] False                                                                                                                           |  |  |  |
|      | •                                                                                       | elps us to understand the direction and degree of association between causation or the cause of the relationship between variables. |  |  |  |
|      | [ ] True                                                                                | [X] False                                                                                                                           |  |  |  |
|      | ficient is low.                                                                         | variables have a perfect non-linear relationship when the correlation                                                               |  |  |  |
|      | [ <b>X</b> ] True                                                                       | [ ] False                                                                                                                           |  |  |  |
| 109. | Correlation implies ca                                                                  | usation.                                                                                                                            |  |  |  |
|      | [ ] True                                                                                | [X] False                                                                                                                           |  |  |  |
|      |                                                                                         |                                                                                                                                     |  |  |  |

110.  $R^2$  (also called coefficient of determination) measures the proportion of variability in the data which can be explained by the model.



|                | [X] True                                              | [ ] False                                                                                 |
|----------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 111.           | R <sup>2</sup> ranges from 0 to 1.                    | The higher $R^2$ is, the better the model can fit the actual data.                        |
|                | [ <mark>X</mark> ] True                               | [ ] False                                                                                 |
|                | Residuals are the vert                                | cical difference between actual values and the predicted values or the "fitted ion model. |
|                | [X] True                                              | [ ] False                                                                                 |
| 113.           | Which of these statem                                 | nents is incorrect?                                                                       |
| []8            | Simple Linear Regression                              | is a statistical technique to fit a straight line through the data points.                |
| []8            | Simple Linear Regression                              | models the quantitative relationship between two variables.                               |
| []8            | Simple Linear Regression                              | describes how one variable changes according to the change of another variable.           |
| [ <b>X</b> ] S | Simple Linear Regression                              | uses at least two predictor variables.                                                    |
| 114.           | The <b>Residual</b> in a reg                          | ression model is the difference between the actual Y and the fitted Y.                    |
| 115.           | The difference between                                | en Simple Linear Regression and Multiple Linear Regression                                |
| •              |                                                       | ession only has one predictor.<br>ression has two or more predictors.                     |
|                | [ <b>X</b> ] True                                     | [ ] False                                                                                 |
|                | Multicollinearity is a si<br>el are correlated with e | tuation where two or more independent variables in a multiple regression ach other?       |
|                | [X] True                                              | [ ] False                                                                                 |
|                | To detect multicollineard Variance Inflation F        | arity and quantify its severity in a regression model we use a measure actor.             |
| 118.           | Which of these is not                                 | a recommended way to deal with multicollinearity?                                         |
|                | [ ] Increase the sar                                  | nple size                                                                                 |



| [ ] Collect samples                                                                                                                              | with a broader r                                      | ange for some predictors                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--|--|
| [ ] Remove the vari                                                                                                                              | able with high n                                      | nulticollinearity and high p-value                              |  |  |
| [ ] Remove variable                                                                                                                              | [ ] Remove variables that are included more than once |                                                                 |  |  |
| [X] Remove the varia                                                                                                                             | able with low mu                                      | ulticollinearity and low p-value                                |  |  |
| 119. Select three types of v                                                                                                                     | alid logistic reg                                     | ression models                                                  |  |  |
| [X] Binary                                                                                                                                       | [X] Ordinal                                           |                                                                 |  |  |
| [X] Nominal                                                                                                                                      | [ ] Tertiary                                          |                                                                 |  |  |
| 120. From the following, se                                                                                                                      | lect those that a                                     | are good indicators of a valid multiple regression model        |  |  |
| [X] Rsquare Adj > 0.80                                                                                                                           |                                                       | [X] All variables VIF < 5                                       |  |  |
| [X] Regression model p-value                                                                                                                     | ue < 0.05                                             | [X] Residuals normally distributed with mean near 0             |  |  |
| [X] Residuals are independe                                                                                                                      | ent                                                   | [X] All variables p-value < 0.05                                |  |  |
| most influence on your "Y".  122. The following assumpting regression model:                                                                     | tions should be                                       | met to ensure the reliability of any simple or multiple linear  |  |  |
| <ul> <li>The errors are normal</li> <li>The errors are indep</li> <li>The errors have a continuous</li> <li>The underlying population</li> </ul> | endent.<br>onstant variance                           |                                                                 |  |  |
| [ <b>X</b> ] True                                                                                                                                | [ ] False                                             |                                                                 |  |  |
| 123. Residuals are the vert line" created by the regressi                                                                                        |                                                       | petween actual values and the predicted values or the "fitted   |  |  |
| [X] True                                                                                                                                         | [ ] False                                             |                                                                 |  |  |
| 124. True or False, An experience previous result?                                                                                               | eriment is a scie                                     | entific exercise to gather data to test a hypothesis, theory or |  |  |
| [X] True                                                                                                                                         | [ ] False                                             |                                                                 |  |  |



|      | True or False, Experin<br>cted actively and purpo | <del>=</del>      | ed studies in that they are prepared such that data is            |
|------|---------------------------------------------------|-------------------|-------------------------------------------------------------------|
|      | [X] True                                          | [ ] False         |                                                                   |
|      | True or False, Experimanalytics used througho     |                   | ould have largely been determined through with the tools process? |
|      | [X] True                                          | [ ] False         |                                                                   |
|      | True or False, a prope<br>ment combinations "tes  | -                 | I run DOE will create waste and defective products because        |
|      | [X] True                                          | [ ] False         |                                                                   |
| 128. | Why use experiments                               | ?                 |                                                                   |
|      | [X] Solve Problems                                |                   | [X] Prove a Hypothesis                                            |
|      | [X] Optimize Perform                              | nance             | [ ] Random Trouble-Shooting                                       |
| 129. | OFAT is a traditional for                         | orm of planned    | experimentation and learning, what does OFAT stands for?          |
| One  | Factor at a Time                                  |                   |                                                                   |
| 130. | Factor levels are the s                           | elected settings  | s of a factor we are testing in the experiment                    |
|      | [X] True                                          | [ ] False         |                                                                   |
| 131. | The most popular DOE                              | E is a two-level  | design meaning there are only two levels for each factor          |
|      | [X] True                                          | [ ] False         |                                                                   |
| 132. | A treatment is a combi                            | nation of differe | ent factors at different level settings                           |
|      | [X] True                                          | [ ] False         |                                                                   |



| levels        | s of | one factor                                    |                   |                                                                                                                      |
|---------------|------|-----------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|
|               | [    | ] True                                        | [X] False         |                                                                                                                      |
|               |      | eraction effect is the on of multiple factors | -                 | ge in the response resulting from the change in the                                                                  |
|               | []   | (] True                                       | [ ] False         |                                                                                                                      |
|               | ates | that the particular fa                        | •                 | your DOE has a p-value larger than alpha level (0.05), it tion does not have statistically significant impact on the |
|               | [)   | <b>(</b> ] True                               | [ ] False         |                                                                                                                      |
| 136.<br>there |      |                                               | vith 3 factors ar | nd two levels, how many treatment combinations should                                                                |
|               | [    | ] 3^2 = 9 treatment                           | :S                | [X] 2^3 = 8 treatments                                                                                               |
|               | [    | ] 2x3 = 6 treatment                           | ts                |                                                                                                                      |
| 137.<br>be?   | In a | a full factorial DOE v                        | vith 3 factors ar | nd two levels and one replicate, how many runs will there                                                            |
|               | [    | ] (3^2) x 2 = 18 run                          | ıs                | [X] (2^3) x 2 = 16 runs                                                                                              |
|               | [    | ] (2 x 3) x 2 = 12 ru                         | ins               |                                                                                                                      |
| 138.          | Re   | plicates are the nur                          | nber of times ru  | unning an individual treatment is repeated                                                                           |
| 139.          | Fra  | actional factorials use                       | e more treatme    | ent combinations or runs than full factorials?                                                                       |
|               | [    | ] True                                        | [X] False         |                                                                                                                      |
|               |      | actional factorial exp<br>tions?              | eriments are in   | tentionally designed with fewer runs or treatment                                                                    |
|               | [)   | <b>(</b> ] True                               | [ ] False         |                                                                                                                      |
|               |      |                                               |                   |                                                                                                                      |

133. An interaction effect is the average change in the response variable resulting from changes in the



|                | •                                                   | periments are intentionally designed with fewer runs or treatment came number of inputs; this causes confounding or aliasing? |
|----------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                | [X] True                                            | [ ] False                                                                                                                     |
|                | When two input factors asily be separated and       | s are aliases with each other, the effects they each have on the response determined?                                         |
|                | [ ] True                                            | [X] False                                                                                                                     |
|                | Fractional factorials ar<br>able to evaluate higher | e less able to determine effects because of fewer degrees of freedom order interactions?                                      |
|                | [X] True                                            | [ ] False                                                                                                                     |
| 144.           |                                                     | with 3 factors and two levels, how many experimental runs will there be?  [X] 2^3/2 = 4 runs                                  |
| 145.           | In a 1/4 fraction DOE v                             | with 8 factors and two levels, how many experimental runs will there be?                                                      |
|                | [ ] 256<br>[ <b>X</b> ] 64                          | [ ]128                                                                                                                        |
| 146.           | <b>Resolution</b> is the qua                        | ntification or degree of confounding                                                                                          |
| 147.<br>that v | •                                                   | od to organize, order, clean, and standardize a workplaceand keep it                                                          |
|                | [X] True                                            | [ ] False                                                                                                                     |
| 148.           | Kanban system is a de                               | emand driven system                                                                                                           |
|                | [X] True                                            | [ ] False                                                                                                                     |



|      | An example of a det<br>n your passenger has           | • •               | ka Yoke is when your car makes an audible "ding" or alarm<br>r seat belt? |
|------|-------------------------------------------------------|-------------------|---------------------------------------------------------------------------|
|      | [X] True                                              | [ ] False         |                                                                           |
|      | An example of a pre closed?                           | ventive type of F | Poka Yoke is when your dishwasher will not start without the              |
|      | [X] True                                              | [ ] False         |                                                                           |
| 151. | The term "poka-yoke                                   | e" in Japanese m  | neans "signboard"                                                         |
|      | [ ] True                                              | [X] False         |                                                                           |
|      | A <mark>Kanban</mark> system is<br>oduce and how much |                   | ion scheduling system to determine when to produce, what ed on the demand |
| 153. | This word in Japane                                   | se means "signb   | ooard" <mark>Kanban</mark>                                                |
| 154. | Which if these is not                                 | a benefit of a Ka | anban system                                                              |
|      | [ ] Minimizes in-p                                    | ocess inventory   |                                                                           |
|      | [ ] Prevents overp                                    | roduction         |                                                                           |
|      | [ ] Improves respo                                    | onsiveness to dy  | namic demand                                                              |
|      | [X] Increases depe                                    | ndency on accu    | rate demand forecasts                                                     |
|      | [ ] Streamlines the                                   | e production flow | I                                                                         |
|      | [ ] Visualizes the                                    | work flow         |                                                                           |
| 155. | From the following, s                                 | select those that | are characteristics of a Lean Enterprise                                  |
|      | [X] Pull Systems                                      |                   | [X] Flow                                                                  |
|      | [X] Zero Waste                                        |                   | [X] Value Add                                                             |
|      | [ ] High Levels of                                    | Inventory         | [ ] Several Quality Control Teams                                         |



|             | 56. Statistical process control (SPC) is a statistical method to monitor the performance of a process sing control charts in order to keep the process in statistical control? |                                                                                         |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
|             | [ <b>X</b> ] True                                                                                                                                                              | [ ] False                                                                               |  |  |
|             | Statistical process con<br>mon cause variation in t                                                                                                                            | trol can be used to distinguish between the special cause variation and the he process? |  |  |
|             | [X] True                                                                                                                                                                       | [ ] False                                                                               |  |  |
| 158.        | It is impossible to elimi                                                                                                                                                      | nate the special cause variation from a process?                                        |  |  |
|             | [ ] True                                                                                                                                                                       | [X] False                                                                               |  |  |
| 159.        | Statistical process con                                                                                                                                                        | trol can be used in different phases of six sigma projects                              |  |  |
|             | [X] True                                                                                                                                                                       | [ ] False                                                                               |  |  |
| 160.        | This control chart plots                                                                                                                                                       | individual points on one graph and moving range points on another graph                 |  |  |
|             | [X] I-MR                                                                                                                                                                       | [ ] Xbar-R                                                                              |  |  |
|             | [ ] Xbar-S                                                                                                                                                                     | [ ] EWMA                                                                                |  |  |
| 161.        | I chart is valid only if M                                                                                                                                                     | IR chart is in control                                                                  |  |  |
|             | [X] True                                                                                                                                                                       | [ ] False                                                                               |  |  |
| 162.<br>and |                                                                                                                                                                                | ol chart for continuous data with a constant subgroup size between two                  |  |  |
|             | [X] True                                                                                                                                                                       | [ ] False                                                                               |  |  |
| 163.        | U chart is a control cha                                                                                                                                                       | art monitoring the percentages of defectives                                            |  |  |
|             | [ ] True                                                                                                                                                                       | [X] False                                                                               |  |  |

164. P chart is a control chart monitoring the average defects per unit



|              | Test 1 of the Westerr                            |                               | when one point lands more than three standard  |    |
|--------------|--------------------------------------------------|-------------------------------|------------------------------------------------|----|
|              | [ <mark>X</mark> ] True                          | [ ] False                     |                                                |    |
| 166.         | NP chart is a control                            | chart monitoring the count    | of defectives                                  |    |
|              | [X] True                                         | [ ] False                     |                                                |    |
|              | Return on investmen<br>stment to its financial c |                               | benefits (either gain or loss) on a project or |    |
|              | [ <mark>X</mark> ] True                          | [ ] False                     |                                                |    |
| 168.         | Net present value is t                           | the total present value of ca | ash flows calculated using a discount rate?    |    |
|              | [ <mark>X</mark> ] True                          | ·<br>[]False                  | Ü                                              |    |
|              |                                                  | -                             |                                                |    |
| 169.<br>time | Control Plans ensur                              | e that the changes introduc   | ced by a Six Sigma project are sustained over  |    |
|              | Standard Operating ific tasks required to c      |                               | ts that focus on process steps, activities and |    |
| 171.         | Which of these might                             | not be considered a stand     | ard element of a control plan?                 |    |
|              | [ ] SOP (Standard                                | Operating Procedures)         | [ ] Communication Plan                         |    |
|              | [ ] Training Plan                                |                               | [ ] Audit Plan                                 |    |
|              | [X] Floor plan                                   |                               |                                                |    |
|              | Control plans typicallormance?                   | y include measurement sys     | stems that monitor and help manage key proces  | 35 |
|              | [ <mark>X</mark> ] True                          | [ ] False                     |                                                |    |

[ ] True

[X] False



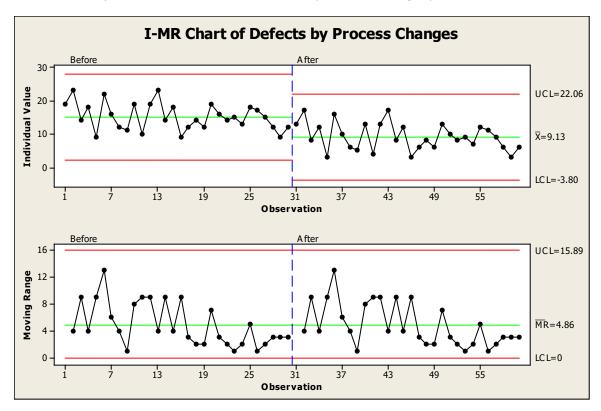
| 173. Communication Plans are documents that focus on planning and preparing for the dissemination of information?             |                                                                                        |                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------|--|--|
| [X] True                                                                                                                      | [ ]Fa                                                                                  | ulse              |  |  |
| 174. A response                                                                                                               | 174. A response plan should be a component of as few control plan elements as possible |                   |  |  |
| [ ] True                                                                                                                      | [ <mark>X</mark> ] Fa                                                                  | lse               |  |  |
| 175. Which of the following might be used to ensure actions, processes, procedures and other tasks are performed as expected? |                                                                                        |                   |  |  |
| [X] Audit                                                                                                                     |                                                                                        | [X] Training      |  |  |
| [X] SOP's                                                                                                                     |                                                                                        | [X] Communication |  |  |
| [ <mark>X</mark> ] Measu                                                                                                      | rements                                                                                | [X] Poka-Yoke     |  |  |

## **Situational Question**

The division you support has been producing units of a special product at one of its troubled facilities. Recently senior management has announced layoffs that have impacted operations so severely that immediate changes in processes are the only way the business can continue producing units. Your peers and supervisors have acted quickly to make the necessary changes and redesign the production & supply chain process to accommodate fewer employees. You have been pulled in to take on the responsibility of monitoring the quality of the units being produced to ensure that the process changes have not adversely affected quality. Fortunately you were anticipating this management action and you began collecting defect data 30 days ago.

A month has now passed since the process changes have been in effect. Below is the data you have been able to collect over the past 60 days. The first 30 data points were proactively collected by you prior to the layoff and the second 30 points are post layoff. Because you diligently studied your Six Sigma training materials, you were also savvy enough to make sure that all data points were randomly drawn from equal subgroup sizes that were properly stratified across shifts and other known production variations so you're confident in the data.

Your supervisors are now requesting an assessment of the quality data and have asked you to conduct the analysis and present it in the production review scheduled for this week. In preparation, use the data below to perform your analysis and answer the following questions:

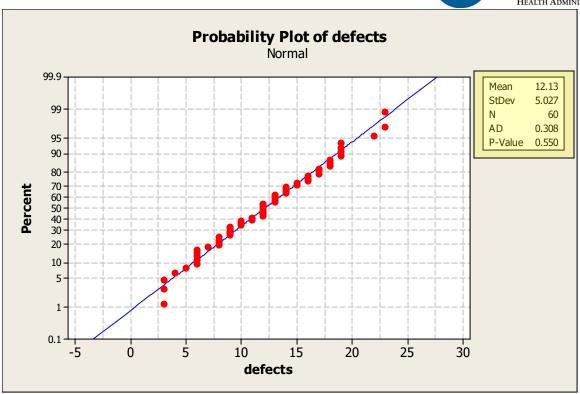



176. True or False, the process before the layoff Defects Process Change **Before** (before process changes) was in control? 23 Before 14 Before [X] True [ ] False 18 Before Before 9 22 Before 16 Before 12 Before 177. True or False, the process after the layoff Before 11 19 Before (post process change) is not in control? 10 **Before** 19 **Before** [ ] True [X] False 23 Before 14 Before 18 Before Before 9 12 Before 178. Given what you know of the situation, which 14 Before of the following control charts should you use to 12 **Before** 19 Before determine process stability? 16 Before 14 **Before** [ ] CumSum [ ] P chart 15 Before 13 Before [ ]EWMA [X] IMR chart 18 Before 17 Before 15 Before 12 Before 9 Before 179. True or False, the data is normally 12 **Before** distributed for each parameter? 13 After 17 After 8 After [X] True [ ] False 12 After 3 After 16 After 10 After 6 After 180. True or False, the parameters have equal 5 After variances? 13 After 4 After [X] True [ ] False 13 After 17 After 8 After 12 After 3 After 181. True or False, in terms of defects, the 6 After 8 process after the layoff has improved? After 6 After 13 After [X] True [ ] False 10 After 8 After 9 After 7 After 12 After 182. True or False, the p-value for a 2-sample t 11 After test between the before and after subgroups is 9 After 6 After greater than 0.05? 3 After 6 After [ ] True [X] False

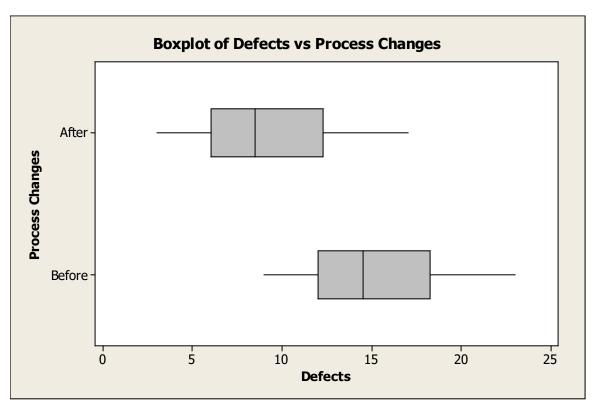


## <u>Situational Assessemnt Results & Interpretations:</u>

Given that the defect samples were randomly drawn from stratified subgroups of equal subgroup sizes and that the data were continuous and independent, the simplest and most effective control chart selection for this particular situation should be the IMR chart (one could argue that it should be the C chart but that chart is not in your curriculum). Below is the IMR chart output with control limits separately calculated for each parameter (process changes).




All tests were performed for this chart and there are no indications of out of control conditions. Both charts, the "I" chart (individuals) and "MR" chart (Moving Range) are stable and in control for each parameter. An interesting note however is that the layoff seemed to have improved the defect rate. Let's dig a little deeper and see if that's real...


Before jumping straight into a statistical comparison of the before and after data we need to validate a couple of key assumptions namely, normality and equal variances.

The probability plot below was performed to assess the normality of the data. The null hypothesis for a normality test is the data are normal. Therefore if the data are not normal we would have to reject the null. However, in order to reject the null our p-value should be below 0.05. The p-value for our test result is 0.55 which indicates that we can't reject the null and we must conclude that the data are normal.





Next we perform a test of equal variances.



Although the box plots appear to be from different populations, alone they are not enough to determine if variances are equal. Below is the statistical output for the test of equal variances.



### Test and CI for Two Variances: Defects vs Process Changes

```
Method
Null hypothesis
                    Sigma(After) / Sigma(Before) = 1
Alternative hypothesis Sigma(After) / Sigma(Before) not = 1
Significance level Alpha = 0.05
Statistics
Process
       N StDev Variance
Changes
After
       30 4.049 16.395
Before 30 4.049 16.395
Ratio of standard deviations = 1.000
Ratio of variances = 1.000
95% Confidence Intervals
                             CI for
Distribution CI for StDev Variance
of Data
             Ratio
                              Ratio
            (0.690, 1.449) (0.476, 2.101)
Normal
Continuous (0.693, 1.444) (0.480, 2.085)
                                         Test
                            DF1 DF2 Statistic P-Value
Method
F Test (normal)
                           29 29 1.00 1.000
                             1 58
Levene's Test (any continuous)
                                         0.00
                                                1.000
```

Knowing the data are normal, we should follow the output of the "F Test" to determine if variances are equal. The result is actually a perfect match with the p-value being 1.0. We can safely assume that two data sets have equal variances. Now let's look at the 2-Sample t test:

### Two-Sample T-Test and CI: Defects, Process Changes

```
Process
Changes N Mean StDev SE Mean
After 30 9.13 4.05 0.74
Before 30 15.13 4.05 0.74

Difference = mu (After) - mu (Before)
Estimate for difference: -6.00
95% CI for difference: (-8.09, -3.91)
T-Test of difference = 0 (vs not =): T-Value = -5.74 P-Value = 0.000 DF = 58
Both use Pooled StDev = 4.0491
```

With the p-value of 0.000, it's well below the 0.05 thresh hold. We will reject the null which is that there is no difference. A p-value of zero clearly indicates that there is a difference between the means of the Before group and After group. If the p is low the null must go!.